Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J Environ Biol ; 2008 Sep; 29(5): 779-84
Article in English | IMSEAR | ID: sea-113971

ABSTRACT

Since, landfill areas are still the most widely used solid waste disposal method across the world, leachate generated from landfills should be given importance. Leachate of landfills exerts environmental risks mostly on surface and groundwater with its high pollutant content, which may cause unbearable water quality. This leads to the obligation for decontamination and remediation program to be taken into progress for the landfill area. Among a number of alternatives to cope with leachate, one is to employ the technology of phytoremediation. The main objective of this study was to determine the N accumulation ratios and the effects of landfill leachate in diluted proportions of chosen ratios (as 1/1, 1/2, 1/4, 0), on the growth and development of Cynodon dactylon, Stenotaphrum secundatum, Paspalum notatum, Pennisetum clandestinum, Mentha piperita, Rosmarinus officinalis, Nerium oleander, Pelargonium peltatum and Kochia scoparia species. In order to simulate the actual conditions of the landfill, soil covering the landfill is taken and used as medium for the trials. The study showed that S. secundatum, K. scoparia and N. oleander species had an impressive survival rate of 100%, being irrigated with pure leachate, while the others' survival rates were between 0 to 35% under the same conditions. As expected, application of leachate to the plants caused an increase in the accumulation of N, in the upper parts of all plants except P. peltatum. The highest N content increase was observed at S. Secundatum set, accumulating 3.70 times higher than its control set, whereas P. clandestinum value was 3.41 times of its control set.


Subject(s)
Biodegradation, Environmental , Environmental Pollution/prevention & control , Nitrogen/metabolism , Plants/growth & development , Refuse Disposal , Turkey , Water Pollutants, Chemical/metabolism
2.
J Environ Biol ; 2005 Jan; 26(1): 13-20
Article in English | IMSEAR | ID: sea-113770

ABSTRACT

Landfills are still the most widely used solid waste disposal method used across the world. Leachate generated from landfill areas exerts environmental risks mostly on surface and groundwater, with its high pollutant content, most notably metals, which cause an unbearable lower water quality. During dumping or after the capacity of the landfill has been reached, a decontamination and remediation program should be taken for the area. This study was conducted to assess the capacity and efficiency of Pennisetum clandestinum, a prostrate perennial plant, to accumulate chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), zinc (Zn) and lead (Pb). Leachate, taken from the Sofulu Landfill Site, was given to Pennisetum clandestinum for 180 days, in 3 dilution sets as 1/1, 1/2 and 1/4, in batch configuration. An additional control set was also installed for comparison. Results showed that, even though the metal content of soil had risen, plants accumulated 2 to 8.5 times higher concentrations than the control set. It is important to see, the plant showed almost no stress symptoms even if the set was fed by pure leachate. Pennisetum clandestinum was observed to accumulate metals mostly in the upper bodies, excluding Fe and Cu. 76% of accumulated Cr, 85% of Ni, 66% of Zn and 100% of Pb was observed to accumulate in above-ground parts, where only 20% of Cu and 4% of Fe was accumulated. Due to the high pollution tolerance of Pennisetum clandestinum, makes this plant suitable for decontamination and remediation of landfill sites.


Subject(s)
Biodegradation, Environmental , Metals/metabolism , Plants/metabolism , Poaceae/metabolism , Refuse Disposal
SELECTION OF CITATIONS
SEARCH DETAIL